THE EFFECT OF myo-INOSITOL 1,4,5-TRISPHOSPHOROTHIOATE ON CI-CURRENT PATTERN AND INTRACELLULAR Ca^{2+} IN THE XENOPUS LAEVIS OOCYTE

James E. Ferguson, Barry Potter¹ and Richard Nuccitelli *

Department of Zoology, University of California, Davis, CA, 95616

Dept of Chemistry, University of Leicester LEI 7RH, United Kingdom

Received July 23, 1990

Summary: Microinjection of myo-inositol 1,4,5-trisphosphate into voltage-clamped *Xenopus laevis* oocytes or the stimulation of the phosphatidylinositol cycle elicits a complex Ca²⁺-dependent Cl⁻ current pattern. Microinjection of myo-inositol 1,3,4,5-tetrakisphosphate causes an immediate release of Ca²⁺, but elicits a different Cl⁻ current pattern than myo-inositol 1,4,5-trisphosphate. We have studied the effects of myo-inositol 1,4,5-trisphosphorothioate, which can not be converted to myo-inositol 1,3,4,5-tetrakisphosphate. Myo-inositol 1,4,5-trisphosphorothioate caused an immediate release of intracellular Ca²⁺, as measured by fura-2 imaging. Myo-inositol 1,4,5-trisphosphorothioate generated a Cl⁻ current pattern similar to myo-inositol 1,3,4,5-tetrakisphosphate, not myo-inositol 1,4,5-trisphosphate.

Press, Inc.**

Press, Inc.**

Press, Inc.**

***Press**, Inc.**

***Press**, Inc.**

Press, Inc.**

***Press**, Inc.**

**

Activation of the phosphatidylinositol (PI) cycle involves the generation of inositol (1,4,5) trisphosphate (Ins(1,4,5)P₃), which triggers the release of Ca²⁺ from internal stores (1). The Ins(1,4,5)P₃ is then either broken down to Ins(1,4)P₂ or converted to Ins(1,3,4,5)P₄. Activation of receptors coupled to the PI cycle or the injection of either Ins(1,4,5)P₃ or Ins(2,4,5)P₃ initiates a complex opening and closing of Ca²⁺-dependent Cl⁻ channels. Thus, the Cl⁻ currents are often used as indirect indicators of PI cycle activation. The current pattern is quite dependent on the amount of Ins(1,4,5)P₃ injected into the cell (3,4,5,6). Injection of a small amount (between 8 x 10⁻¹⁷ moles and 3.0 x 10⁻¹⁴ moles) of Ins(1,4,5)P₃ into the oocyte triggers a single immediate Cl⁻ current pulse without any subsequent Cl⁻ current oscillations. When greater amounts $(1 \times 10^{-12} \text{ moles})$ of Ins(1,4,5)P₃ are injected the fast Cl⁻ current pulse is followed by a quiescent period which in turn is followed by oscillating Cl⁻ currents. The amplitude of the oscillating Cl⁻ currents is at first small but becomes progressively larger and is superimposed on top of a slow Cl⁻ current conductance. The current pattern which is induced by large amounts of Ins(1,4,5)P₃ is similar to the current pattern induced by activation of receptors coupled to the PI cycle.

^{*} To whom correspondence should be addressed.

<u>Abbreviations:</u> Ins $(1,4,5)P_3$, <u>myo</u>-inositol 1,4,5-trisphosphate; Ins $(1,3,4,5)P_4$, <u>myo</u>-inositol 1,3,4,5-tetrakisphosphate; Ins $(1,4,5)P_3[S]_3$, <u>myo</u>-inositol 1,4,5-trisphosphorothioate.

Recently it has been reported that Ins(1,3,4,5)P₄ initiates a Cl⁻ current pattern that differs from Ins(1,4,5)P₃ (4, 5, 6, 7). Ins(1,3,4,5)P₄ injection is followed by a quiescent period of up to several minutes which is followed by oscillating Cl⁻ currents. Ins(1,3,4,5)P₄ does not trigger the immediate Cl⁻ current pulse, even at high concentrations. We have recently reported that Ins(1,3,4,5)P₄ releases Ca²⁺ from intracellular stores in less than 0.5 sec. (5, 7). It is not clear why both Ins(1,4,5)P₃ and Ins(1,3,4,5)P₄ cause an immediate rise in intracellular Ca²⁺ but have different effects on Cl⁻ current pattern. The lag time between Ca²⁺ elevation and the appearance of currents suggests that the Cl⁻ currents are not accurate indicators of changes in intracellular Ca²⁺.

In an attempt to learn more about the underlying mechanism behind the Ins(1,4,5)P₃-induced Cl⁻ current pattern versus that involved in Ins(1,3,4,5)P₄-induced Cl⁻ current pattern, we studied the effects of a new InsP₃ analogue, myo-inositol 1,4,5-trisphosphorothioate, (Ins(1,4,5)P₃[S]₃) [see 8 for review]. In this analogue each phosphate is replaced by a phosphorothioate group. Since it is 5-phosphatase and 3-kinase resistant, it cannot be readily broken down to Ins(1,4)P₂ or converted to Ins(1,3,4,5)P₄ (8, 9, 10). Ins(1,4,5)P₃[S]₃ has been shown to release Ca²⁺ from a variety of permeabilized (8, 10, 12, 13) cells and has been reported to cause membrane potential oscillations in the *Xenopus* oocyte (11). We have studied the effect of Ins(1,4,5)P₃[S]₃ on the Cl⁻ current pattern in voltage-clamped *Xenopus* oocytes and have directly measured changes in intracellular Ca²⁺ using fura-2 imaging. A preliminary report of these data has been presented (14).

Material and Methods

OCCYTE PREPARATION: Ovaries were surgically removed from gravid *Xenopus* females. Stage VI oocytes were isolated and the follicle cells removed with forceps. Albino *Xenopus* oocytes were used in the fura-2 experiments to minimize autofluorescence.

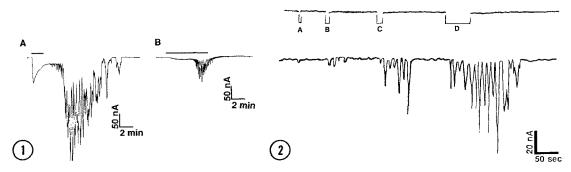
<u>SOĽUTIONS:</u> OR2: 82.5 mM NaCl; 2.5 mM KCl; 1.0 mM MgCl2; 2.5 mM NaHC03; 1.0 mM CaCl2; 5 mM Hepes pH 7.4. O-Ca²⁺-high-Mg²⁺: 82.5 mM NaCl, 2.0 mM KCl; 20 mM MgCl2, 1.0 mM EGTA; 5 mM Hepes pH 7.4.

ELECTROPHYSIOLOGY: Cells were voltage-clamped at -60 mV with a two-electrode clamp (Dagan model 8500, Minneapolis, Minn.). The current was measured through a virtual ground circuit. Cells were injected by pressure or iontophoresis. Injections were made in the animal hemisphere because the plasma membrane in that hemisphere contains more Cl- channels (15, 16) and more calcium storage sites (17, 18, 19). For pressure injections, the width of the injection pipette tip was 3 µm. For iontophoresis, the amount injected was determined by the formula q=-nI/zF. The transport number was assumed to be 0.5. Each phosphate on the inositol was assumed to have a charge of -2. Amounts of polyphosphoinositols are reported in coulombs and the theoretical calculated amounts of moles are in parentheses. All injections were done with theta tubing and each barrel was filled with a different inositol. The two electrode tips' close proximity insures that effects of the different inositol phosphates or analogues were examined on the same cell area. Ins(1,4,5)P₃[S]₃ injections were done at the same depth as Ins(1,4,5)P₃ and Ins(1,3,4,5)P₄ injections.

Ins(1,4,5)P₃ and Ins(1,3,4,5)P₄ were generously provided by Dr. Robin Irvine. DL-Ins(1,4,5)P₃[S]₃, D-Ins(1,4,5)P₃[S]₃, and L-Ins(1,4,5)P₃ were synthesized similarly using resolved precursor (20). The inositol phosphates were prepared as 1.0 mM stock solutions in 0.1 mM Hepes and adjusted to pH 7.8 with KOH. DL-Ins(1,4,5)P₃[S]₃ and D-Ins(1,4,5)P₃[S]₃ were both used in the voltage-clamp experiments. The fura-2 imaging studies were done with D-Ins(1,4,5)P₃[S]₃.

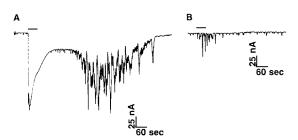
<u>FURA-2 IMAGING</u>: The optical system used for fura-2 imaging was described previously (5). In each image, the Ca²⁺ was measured in a circular spot of a specific diameter, centered at the site of injection. Each data point represents the average Ca²⁺ level in the circular spot during a specific time interval. The cells were first prepared with a 50 nl injection of 1 mM fura-2. The 1 mM fura-2 stock was made in a physiological intracellular buffer: 19 mM NaCl, 52 mM KCl, and

10 mM HEPES, adjusted to pH 7.3 with KOH. 0.5 mM CaCl₂ was also added so that the fura-2 was half-saturated, generating a free Ca²⁺ concentration of 240 nM. The final intracellular concentration of fura-2 was always 55 μ M, based on a cytoplasmic volume of 0.91 μ l. The fura-2 was allowed to diffuse throughout the oocyte for approximately 30 minutes at 20 °C.


Results

Ins(1,4,5)P₃[S]₃-Induced Cl⁻ Current Pattern

Figure 1A shows the typical Ins(1,4,5)P₃-induced Cl⁻ current pattern when large amounts are injected into a voltage-clamped oocyte. The pattern consists of a fast, immediate Cl⁻ current pulse, followed by a quiescent period, followed by oscillating Cl⁻ currents (2). When an oocyte is injected with Ins(1,3,4,5)P₄, the current pattern is quite different as shown in Fig.1B (4, 5, 6). Thus, Ins(1,3,4,5)P₄ only initiates the latter part of the Ins(1,4,5)P₃-induced Cl⁻ current pattern.


The injection of Ins(1,4,5)P₃[S]₃ triggered only oscillating Cl⁻ currents. These currents were identified as Cl⁻ currents due to a reversal potential of approximately of -25 mV, which is the expected reversal potential for an internal [Cl⁻] of 33.4 mM and an external [Cl⁻] of 89 mM (21). Injection of Ins(1,4,5)P₃[S]₃ was followed first by a quiescent period, which was followed by oscillating Cl⁻ currents. The quiescent period varied from many seconds to minutes, however usually the quiescent period was on the order of seconds. Ins(1,4,5)P₃[S]₃ did not trigger the fast immediate Cl⁻ current pulse even at high concentrations (Fig 2, Fig 3). Thus, Ins(1,4,5)P₃[S]₃ gives a current pattern similar to the Ins(1,3,4,5)P₄-induced pattern.

The initial voltage-clamp experiments were done with DL-Ins(1,4,5)P₃[S]₃, which is a racemic mixture. Therefore, as a control we injected L-Ins(1,4,5)P₃ (also identified as D-Ins(3,5,6)P₃), and found it had no effect on conductance even at 12 μ C (1 x 10⁻¹¹ moles) (data not shown). However, in most of the experiments we used D-Ins(1,4,5)P₃[S]₃, which gave the same current response as the DL-Ins(1,4,5)P₃[S]₃. Injection by either iontophoresis or pressure injection gave

<u>Fig. 1.</u> The typical Cl⁻ current patterns initiated by large injections of Ins(1,4,5)P₃ and Ins(1,3,4,5)P₄, shown in two different cells. (A) Injection of 1.5 μ C (1.3 x 10⁻¹² moles) of Ins(1,4,5)P₃. (B) Injection of 12.9 μ C (8.3 x 10⁻¹² moles) of Ins(1,3,4,5)P₄. The bars represent the time the iontophoresis injection current was on.

<u>Fig 2.</u> Response of a voltaged-clamped oocyte to iontophoresis of D-Ins(1,4,5)P₃[S]₃. The upper trace of the figure is the iontophoresis current and the lower trace represents the current crossing the oocyte membrane. Inward current is downward. The cell was injected 4 times. (A) 0.058 μ C (5 x 10⁻¹⁴ moles), (B) 0.29 μ C (2.5 x 10⁻¹³ moles), (C) 0.58 μ C (5 x 10⁻¹³ moles), (D) 2.9 μ C.(2.5 x 10⁻¹² moles).

<u>Fig. 3.</u> Comparison of the effects of Ins(1,4,5)P₃ and D-Ins(1,4,5)P₃[S]₃ on the Cl⁻ current pattern in the same cell, voltaged-clamped at -60 mV. (A) $1.5 \,\mu\text{C}$ (1.3 x 10^{-12} moles) of Ins(1,4,5)P₃ was injected during the time period indicated by the bar. (B) inject $1.5 \,\mu\text{C}$ (1.3 x 10^{-12} moles) of Ins(1,4,5)P₃[S]₃.

the same current pattern. Figure 3 demonstrates the effects of similar amounts of $Ins(1,4,5)P_3$ and D-Ins(1,4,5)P₃[S]₃ on Cl⁻ current pattern in the same oocyte.

Intracellular Ca²⁺ Measurement

Internal Ca²⁺ was measured directly with a fura-2 imaging system. One barrel of the theta tubing contained Ins(1,4,5)P₃ and the other barrel contained D-Ins(1,4,5)P₃[S]₃. Figure 4

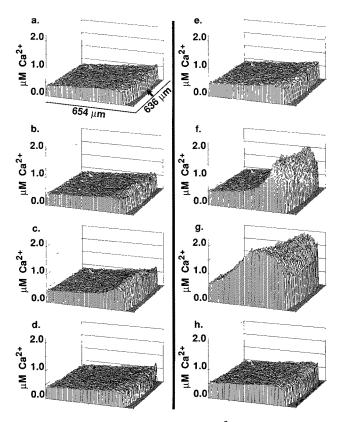


Fig 4. Three dimensional, spatial graph of intracellular [Ca²⁺]. The graph shows half of the cell. The arrow in panel "a" represents the placement of the double-barrel injection pipette. Panels a-d: $1.6~\mu C$ (1.38~x 10^{-12} moles) of D-Ins($1,4,5)P_3[S]_3$ was injected: "a" before injection, "b" 10 sec. after injection, "c" maximal response is at 52 sec., "d" recovery at 3 min and 10 sec. e-h: $1.6~\mu C$ (1.38~x 10^{-12} moles) of Ins($1,4,5)P_3$ was injected into the same oocyte at the same location through the other barrel of the injection pipette; "e" before injection, "f" 10 sec. after injection, "g" maximal response is at 1 min and 25 sec., "h" recovery at 25 min and 46 sec.

shows that both $Ins(1,4,5)P_3$ and $Ins(1,4,5)P_3[S]_3$ caused a localized release in Ca^{2+} , but there is a difference in their Ca^{2+} releasing efficacy. Injections of large amounts of these inositol polyphosphates or analogues will cause a rise of Ca^{2+} which spreads from the point of injection. The maximal release, as shown in figure 4, was determined by measuring the Ca^{2+} in a circular spot 10 μ m in diameter at the edge of the cell. At later time points the Ca^{2+} rose further inside the cell.

To compare the Ca^{2+} releasing characteristics of $Ins(1,4,5)P_3$ and $Ins(1,4,5)P_3[S]_3$, we measured the difference in the height of the maximal release of Ca^{2+} at two different concentrations (Fig.5). The change in Ca^{2+} was measured in both a 70 μ m circle around the injection site and in a 30 μ m circle around the injection site. When 320 nC (2.76 x 10⁻¹³ moles) of $Ins(1,4,5)P_3$ and $Ins(1,4,5)P_3[S]_3$ was injected it was found that $Ins(1,4,5)P_3$ was 11.7 ± 3.8 (s.d., n=9) times more potent when the measurement were made using a 70 μ m circle. If the Ca^{2+} was measured in a 30 μ m circle $Ins(1,4,5)P_3$ was found to be 11.5 ± 2.3 (n=6) times more potent. When 1.6μ C (1.38×10^{-12} moles) was injected and the Ca^{2+} measured in a 70 μ m circle, $Ins(1,4,5)P_3$ was found to be 7.0 ± 1.7 (n=2) times more potent. If the Ca^{2+} was measured in a 30 μ m circle, $Ins(1,4,5)P_3$ was found to be 7.7 ± 5.3 (n=6) times more potent. $Ins(1,4,5)P_3[S]_3$ did not cause the intracellular $Ins(1,4,5)P_3[S]_3$ did not cause the intracellular $Ins(1,4,5)P_3[S]_3$ cannot be rapidly degraded. Fluctuations in $Ins(1,4,5)P_3[S]_3$ cannot be rapidly degraded. Fluctuations in $Ins(1,4,5)P_3[S]_3$ was measured in a 70 $Ins(1,4,5)P_3[S]_3$ cannot be rapidly degraded. Fluctuations in $Ins(1,4,5)P_3[S]_3$ was measured in a 70 $Ins(1,4,5)P_3[S]_3$ cannot be rapidly degraded. Fluctuations in $Ins(1,4,5)P_3[S]_3$ was measured in a 70 $Ins(1,4,5)P_3[S]_3$ cannot be rapidly degraded. Fluctuations in $Ins(1,4,5)P_3[S]_3$ was measured in a 70 $Ins(1,4,5)P_3[S]_3$ cannot be rapidly degraded. Fluctuations were observed when the $Ins(1,4,5)P_3[S]_3$ cannot be rapidly degraded. Fluctuations were observed (data not shown).

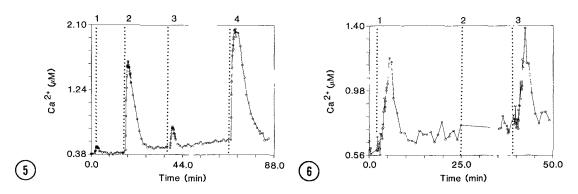


Fig. 5. Time course of Ca^{2+} release in an immature oocyte measured with the fura-2 technique in response to similar amounts of $Ins(1,4,5)P_3$ and D- $Ins(1,4,5)P_3[S]_3$. The Ca^{2+} release was monitored by imaging the oocyte, which had been injected with fura-2. A circular spot 70 μ m in diameter was positioned at the edge of each image, at the site of injection. Each data point represents the average Ca^{2+} level in the circular spot every 6 seconds. At the dotted line marked "1", $0.32~\mu$ C ($2.76~x~10^{-13}$ moles) of D- $Ins(1,4,5)P_3[S]_3$ was injected. "2", $0.31~\mu$ C ($2.68~x~10^{-13}$ moles) of $Ins(1,4,5)P_3$ was injected. "3", $1.6~\mu$ C ($1.38~x~10^{-12}$ moles) of D- $Ins(145)P_3[S]_3$ was injected. "4", $1.6~\mu$ C ($1.38~x~10^{-12}$ moles) of $Ins(1,4,5)P_3$ was injected.

<u>Fig. 6.</u> Fura-2 imaging measurement of Ca^{2+} release which demonstrates that the intracellular Ca^{2+} rise caused by D-Ins(145)P₃[S]₃ in the oocyte is not dependent on extracellular Ca^{2+} . The Ca^{2+} release was monitored in the same manner as figure 5, except that the Ca^{2+} was measured in a 30 μm circular spot. The cell was initially in OR2 buffer. At the dotted line marked "1", 3.2 μC $(2.76 \times 10^{-12} \text{ moles})$ of D-Ins(1,4,5)P₃[S]₃ was injected, "2", the cell was transferred to 0- Ca^{2+} high Mg^{2+} buffer, "3", 3.2 μC $(2.76 \times 10^{-12} \text{ moles})$ of Ins(1,4,5)P₃[S]₃ was injected into the oocyte.

Figure 6 demonstrates that D-Ins(1,4,5)P₃[S]₃ released Ca^{2+} from intracellular stores. The Ins(1,4,5)P₃[S]₃-induced Ca^{2+} release was similar whether the cell was bathed in a 1 mM Ca^{2+} buffer or 0- Ca^{2+} /high Mg²⁺ buffer.

Discussion

Ins(1,4,5)P₃[S]₃ unexpectedly elicited a Cl⁻ current pattern similar to the Ins(1,3,4,5)P₄induced Cl⁻ current pattern, rather than that of Ins(1,4,5)P₃. The only previous study of the effects of Ins(1,4,5)P₃[S]₃ on Xenopus oocytes examined membrane potential oscillations rather than current oscillations, therefore distinct differences between Ins(1,4,5)P₃ and Ins(1,4,5)P₃[S]₃ were not seen (11). The underlying cause for the difference in current pattern generated by $Ins(1,4,5)P_3$ compared to $Ins(1,3,4,5)P_4$ and $Ins(1,4,5)P_3[S]_3$ is not yet known. One possible explanation is that the $Ins(1,4,5)P_3[S]_3$ binds to the $Ins(1,3,4,5)P_4$ receptor rather than the Ins(1,4,5)P₃ receptor. We have previously reported that Ins(1,3,4,5)P₄ directly triggers an immediate release of Ca²⁺ when injected into oocytes (5, 7). The Ins(1,3,4,5)P₄-induced release of Ca^{2+} is not due to its conversion back to $Ins(1,4,5)P_3$ (7). Both $Ins(1,3,4,5)P_4$ and Ins(1,4,5)P₃[S]₃ cause an immediate release of Ca²⁺ but there is a lag time before any currents are observed. This discrepancy between Ca²⁺ release and Cl⁻ current activation should make investigators cautious about using Cl- currents as exact indicators of changes in intracellular Ca²⁺. The different current patterns cannot be explained only in terms of the different Ca²⁺ releasing potency of these inositol polyphosphates, because very small amounts of Ins(1,4,5)P₃ (1 x 10⁻¹⁷ moles) will only initiate a fast CI-pulse with no oscillating currents. As the amount of Ins(1,4,5)P₃ injected into an oocyte is increased, oscillating currents will eventually follow the immediate Cl⁻ current pulse. Ins(1,3,4,5)P₄ and Ins(1,4,5)P₃[S]₃, regardless of concentration, can only trigger oscillating Cl- currents and these currents only occur after a quiescent or latent period. The length of the quiescent time is much more variable and shorter following Ins(1,4,5)P₃[S]₃ than Ins(1,3,4,5)P₄ injections. The quiescent period suggests that some type of biochemical step may be involved in the regulation of the oscillating Cl⁻ current. The evidence also suggests that there may be either two different classes of Cl- channels, or one type which can be altered by some Ca²⁺-dependent biochemical event. Since Ins(1,4,5)P₃[S]₃ and Ins(1,3,4,5)P₄ injections were made at the same electrode depth as Ins(1,4,5)P₃ injections, depth is not responsible for the current pattern differences.

Ins(2,4,5)P₃ is another InsP₃ analogue which is not readily converted to Ins(1,3,4,5)P₄ (22). We and another group have previously studied the effects of Ins(2,4,5)P₃ (5, 6, 7) and found that Ins(2,4,5)P₃ generated the same current pattern as Ins(1,4,5)P₃. We reported that the only difference between Ins(1,4,5)P₃ and Ins(2,4,5)P₃ was that the latter was approximately 4 times less effective in eliciting the fast Cl⁻ current pulse (5,7). Thus, two InsP₃ analogues, Ins(2,4,5)P₃ and Ins(1,4,5)P₃[S]₃, which cannot be converted to Ins(1,3,4,5)P₄, each have unexpectedly different effects on Cl⁻ current pattern.

We also showed directly with fura-2 imaging that Ins(1,4,5)P₃[S]₃ releases Ca²⁺ from an intact, non-permeabilized cell. Both Ins(1,4,5)P₃ and Ins(1,4,5)P₃[S]₃ triggered a localized release and spread of Ca²⁺. However it took a large amount of Ins(1,4,5)P₃ or Ins(1,4,5)P₃[S]₃ to initiate a spread of free Ca²⁺ across the cell. This is in contrast to results in the mature egg,

where a very small amount of Ins(1,4,5)P₃ triggers a localized release of Ca²⁺, and a Ca²⁺ wave which is propagated across the cell (23). The inability to trigger a propagated Ca²⁺ wave in the immature oocyte with low amounts of Ins(1,4,5)P3 may be due to the fact that the immature oocyte has a different endoplasmic reticulum network than the mature egg (17, 18, 19). Our results also suggest that small distinct areas of the cell each may have different Cl- current patterns and all of these areas combine to give an overall current pattern.

In experiments with permeabilized cells, the Ins(1,4,5)P₃[S]₃ is not able to diffuse away from its site of action. Ins(1,4,5)P₃[S]₃ causes a sustained elevation of intracellular Ca²⁺ in permeabilized human SY5Y neuroblastoma cells (8). We found that Ins(1,4,5)P₃[S]₃ does not cause a sustained elevation in Ca2+ in the intact oocyte. Since Ins(1,4,5)P3 diffuses at a rate of 50 µm per 3 seconds in Limulus photoreceptors, our result may be due to the rapid diffusion of $Ins(1,4,5)P_3[S]_3$ from the site of injection (24).

With two different concentrations we found that Ins(1,4,5)P₃[S]₃ was approximately 10-fold less potent than Ins(1,4,5)P₃ at releasing intracellular Ca²⁺. In permeabilized cells Ins(1,4,5)P₃[S]₃ has been reported to be approximately 3 to 4 times less potent than Ins(1,4,5)P₃ (10, 11, 13). This small difference between the permeabilized cell data and our results may be due to either the different techniques of Ca²⁺ measurement or to our assumption that both Ins(1,4,5)P₃ and Ins(1,4,5)P₃[S]₃ have the same overall charge. We have previously reported that 320 nC of Ins(1,3,4,5)P₄ is approximate 5-fold less potent than Ins(1,4,5)P₃ in releasing intracellular Ca²⁺ (7). Therefore both Ins(1,3,4,5)P₄ and Ins(1,4,5)P₃[S]₃ have similar Ca²⁺ releasing characteristics and effects on Cl-conductance. But, as explained previously, the Ca²⁺releasing characteristics alone do not explain why Ins(1,4,5)P₃[S]₃ and Ins(1,3,4,5)P₄ cannot elicit the fast, immediate Cl- current pulse.

In conclusion, we have shown in the Xenopus oocyte that Ins(1,4,5)P₃[S]₃ causes a Clcurrent pattern similar to the Ins(1,3,4,5)P₄-induced Cl⁻ current pattern, not the Ins(1,4,5)P₃ pattern. Ins(1,4,5)P₃[S]₃ causes a transient release of internal Ca²⁺ from the intact Xenopus oocyte.

Acknowledgments. This work was partially supported by NIH grants HD19966 and HD22594 (awarded to R.N.). We thank S.E.R.C. (U.K.) for financial support. B.V.L.P. is a Lister Institute Fellow.

References

- 1. Berridge, M. J. (1987) Ann. Rev. Biochem. 56, 159-193
- 2. Oron, Y., Dascal, N., Nadler, E., and Lupu, M. (1985) Nature 313, 141-143.
- 3. Gillo, B., Lass, Y., Nadler, E. and Oron, Y. (1987) J. Physiol. 392, 349-361.
- 4. Parker, I., and Miledi, R. (1987) Pro. R. Soc. Lon. B. 235, 59-70.
- 5. Nuccitell, R. Ferguson, J. and Han, J-K. (1989) in Mechanisms of Egg Activation (Nuccitelli, R., Cherr, G.N. and Clark, W. H. eds) Plenum Press, New York pp. 215-
- Synder, P. M., Krasue, K-H, and Welsh, M. J. (1988) J. Biol. Chem. 262, 11048-11051.
 Ferguson, J. E. Han, J-K., Kao, J. P. Y. and Nuccitelli, R. (1990) Exp. Cell Res. (submitted)
- 8. Nahorski, S. R. and Potter, B. V. L. (1989) Trends Pharmacol. Sci 10, 139-144.
- 9. Willcocks, A. L. Potter, B. V. L., Cooke, A. M. and Nahorski, S. R. (1988) Eur. J. Pharmacol. 155, 181-183

- 10. Taylor, C. W., Berridge, M. J., Cooke, A. M., and Potter, B. V. L. (1989) Biochem. J. **259**, 645-650.
- 11. Taylor, C. W., Berridge, M. J., Brown, K. D., Cooke, A. M. and Potter, B. V. L. (1988) Biochem. Biophys. Res. 150, 626-632.
- 12. Thevenod, F., Dehlinger-Kremer, M. Kemmer, T. P., Christian, A-L., Potter, B. V. L. and Schulz, I. (1989). J. Membrane Biol. 109, 173-186.
- 13. Strupish, J. Cooke, A. M., Potter, B. V. L., and Gigg, R. and Nahorski, S. R. (1988) Biochem. J. 253, 901-905.
- 14. Ferguson, J. E., Potter, B. V. L., and Nuccitelli, R. (1989). J. Cell Biol 109, 1150a.
- 15. Robinson, K. R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 837-841.
- 16. Miledi, R. and Parker, I. (1984) J. Physiol. 357, 173-183.
- 17. Gardiner, D. M. and Grey, R. (1983) J. Cell Biol 96, 1159-1163.
- 18. Campenella, C. Andreuceetti, P., Taddei, C., and Televi, R. (1984) J. Exp. Zool. 229, 283-293.
- 19. Charbonneau, M. and Grey, R. D. (1984) Dev. Biol. 102, 90-97.
- 20. Cooke, A. M. Gigg, R., and Potter, B. V. L. (1987) J. Chem. Soc. Chem. Commun. 698, 1525-1526.
- 21. Barish, M. E. (1983). J. Physiol. 343, 309-325.
- Irvine, R. F. and Moor, R. M. (1986) Biochem. J. 240, 917-920.
 Busa, W. B. and Nuccitelli, R. (1985) J. Cell Biol. 100, 1329-1329.
- 24. Payne, R. and Fein, A. (1987) J. Cell Biol. 104, 933-937.